Abstract
Due to the great significance of amino acids, a substantial number of research studies has been directed toward the development of effective and reliable platforms for their evaluation, detection, and identification. In order to support these studies, a new electrochemical platform based on PANI/ZnO nanowires’ modified carbon inks screen-printed electrodes was developed for qualitative analysis of electroactive amino acids, with emphasis on tyrosine (Tyr) and tryptophan (Trp). A comparative investigation of the carbon ink before and after modification with the PANI/ZnO was performed by scanning electron microscopy and by Raman spectroscopy, confirming the presence of PANI and ZnO nanowires. Electrochemical investigations by cyclic voltammetry and electrochemical impedance spectroscopy have shown a higher charge-transfer rate constant, which is reflected into lower charge-transfer resistance and higher capacitance values for the PANI/ZnO modified ink when compared to the simple carbon screen-printed electrode. In order to demonstrate the electrochemical performances of the PANI/ZnO nanowires’ modified carbon inks screen-printed electrodes for amino acids analysis, differential pulse voltammograms were obtained in individual and mixed solutions of electroactive amino acids. It has been shown that the PANI/ZnO nanowires’ modified carbon inks screen-printed electrodes allowed for tyrosine and tryptophan a peak separation of more than 100 mV, enabling their screening and identification in mixed solutions, which is essential for the electrochemical analysis of proteins within the proteomics research field.
Funder
Romanian National Authority for Scientific Research and Innovation
Romanian Ministry of Research and Innovation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献