ame-miR-34 Modulates the Larval Body Weight and Immune Response of Apis mellifera Workers to Ascosphara apis Invasion

Author:

Wu Ying,Guo Yilong,Fan Xiaoxue,Zhao Haodong,Zhang Yiqiong,Guo Sijia,Jing Xin,Liu Zhitan,Feng Peilin,Liu Xiaoyu,Zou Peiyuan,Li Qiming,Na Zhihao,Zhang Kuihao,Chen Dafu,Guo Rui

Abstract

MiRNAs are critical regulators of numerous physiological and pathological processes. Ascosphaera apis exclusively infects bee larvae and causes chalkbrood disease. However, the function and mechanism of miRNAs in the bee larval response to A. apis infection is poorly understood. Here, ame-miR-34, a previously predicted miRNA involved in the response of Apis mellifera larvae to A. apis invasion, was subjected to molecular validation, and overexpression and knockdown were then conducted to explore the regulatory functions of ame-miR-34 in larval body weight and immune response. Stem-loop RT-PCR and Sanger sequencing confirmed the authenticity of ame-miR-34 in the larval gut of A. mellifera. RT-qPCR results demonstrated that compared with that in the uninfected larval guts, the expression level of ame-miR-34 was significantly downregulated (p < 0.001) in the guts of A. apis-infected 4-, 5-, and 6-day-old larvae, indicative of the remarkable suppression of host ame-miR-34 due to A. apis infection. In comparison with the corresponding negative control (NC) groups, the expression level of ame-miR-34 in the larval guts in the mimic-miR-34 group was significantly upregulated (p < 0.001), while that in the inhibitor-miR-34 group was significantly downregulated (p < 0.01). Similarly, effective overexpression and knockdown of ame-miR-34 were achieved. In addition, the body weights of 5- and 6-day-old larvae were significantly increased compared with those in the mimic-NC group; the weights of 5-day-old larvae in the inhibitor-miR-34 group were significantly decreased in comparison with those in the inhibitor-NC group, while the weights of 4- and 6-day-old larvae in the inhibitor-miR-34 group were significantly increased, indicating the involvement of ame-miR-34 in modulating larval body weight. Furthermore, the expression levels of both hsp and abct in the guts of A. apis-infected 4-, 5-, and 6-day-old larvae were significantly upregulated after ame-miR-34 overexpression. In contrast, after ame-miR-34 knockdown, the expression levels of the aforementioned two key genes in the A. apis-infected 4-, 5-, and 6-day-old larval guts were significantly downregulated. Together, the results demonstrated that effective overexpression and knockdown of ame-miR-34 in both noninfected and A. apis-infected A. mellifera larval guts could be achieved by the feeding method, and ame-miR-34 exerted a regulatory function in the host immune response to A. apis invasion through positive regulation of the expression of hsp and abct. Our findings not only provide a valuable reference for the functional investigation of bee larval miRNAs but also reveal the regulatory role of ame-miR-34 in A. mellifera larval weight and immune response. Additionally, the results of this study may provide a promising molecular target for the treatment of chalkbrood disease.

Funder

National Natural Science Foundation of China

China Agriculture Research System

Master Supervisor Team Fund of Fujian Agriculture and Forestry University

Scientific Research Project of College of Animal Sciences (College of Bee Science) of Fujian Agriculture and Forestry University

Undergraduate Innovation and Entrepreneurship Training Program of Fujian province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference58 articles.

1. Honey Bee (Apis mellifera) Immunity;Morfin;Vet. Clin. North Am. Food Anim. Pract.,2021

2. Zeng, Z.J. (2017). Apiculture, China Agriculture Press. [3rd ed.]. (In Chinese).

3. Chalkbrood disease in honey bees;Aronstein;J. Invertebr. Pathol.,2010

4. miRBase: microRNA sequences, targets and gene nomenclature;Grocock;Nucleic Acids Res.,2006

5. miRNAs regulated by estrogens, tamoxifen, and endocrine disruptors and their downstream gene targets;Klinge;Mol. Cell. Endocrinol.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3