Abstract
Current molecular classification approaches for endometrial cancer (EC) often employ multiple testing platforms. Some subtypes still lack univocal prognostic significance, highlighting the need for risk sub-stratification. The tumor immune microenvironment (TIME) is associated with tumor progression and prognosis. We sought to investigate the feasibility of classifying EC via DNA sequencing and interrogate immunologic signatures and prognostic markers across and within subtypes, respectively. Formalin-fixed paraffin-embedding (FFPE) samples from 50 EC patients underwent targeted DNA and RNA sequencing, and multiplex immunofluorescence assay for TIME. DNA sequencing classified 10%, 20%, 52%, and 18% of patients into the subtype of POLE-mutant, microsatellite instability-high (MSI-H), TP53-wt, and TP53-mutant. POLE-mutant tumors expressed the highest T-effector and IFN-γ signature and the lowest innate anti-PD-1 resistance signature among subtypes. TP53-wt revealed a converse enrichment trend for these immunologic signatures. Survival analyses using the Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) dataset identified associations of CCR5 (hazard ratio (HR) = 0.71, p = 0.035), TNFRSF14 (HR = 0.58, p = 0.028), and IL-10 (HR = 2.5, p = 0.012) with overall survival within MSI-H, TP53-mutant, and TP53-wt subtype, respectively. A TIME comparison between the sub-stratified subgroups of our cohort revealed upregulated tumor infiltration of immune cells in the low-risk subgroups. Our study demonstrates that targeted DNA sequencing is an effective one-stop strategy to classify EC. Immunomodulatory genes may serve as prognostic markers within subtypes.
Funder
National Natural Science Foundation of China
Beijing Natural Science Foundation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献