Abstract
APX is a key antioxidant enzyme in higher plants, scavenging H2O2 with ascorbate in several cellular compartments. Here, we report the crystal structures of cytosolic ascorbate peroxidase from switchgrass (Panicum virgatum L., Pvi), a strategic feedstock plant with several end uses. The overall structure of PviAPX was similar to the structures of other APX family members, with a bound ascorbate molecule at the ɣ-heme edge pocket as in other APXs. Our results indicated that the H2O2-dependent oxidation of ascorbate displayed positive cooperativity. Significantly, our study suggested that PviAPX can oxidize a broad range of phenylpropanoids with δ-meso site in a rather similar efficiency, which reflects its role in the fortification of cell walls in response to insect feeding. Based on detailed structural and kinetic analyses and molecular docking, as well as that of closely related APX enzymes, the critical residues in each substrate-binding site of PviAPX are proposed. Taken together, these observations shed new light on the function and catalysis of PviAPX, and potentially benefit efforts improve plant health and biomass quality in bioenergy and forage crops.
Funder
NSF
Murdock Charitable Trust
USDA-ARS United States Department of Agriculture
USDA-ARS United States Department of Agriculture, Agricultural Research Service USDA-ARS CRIS projects
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献