The Polymorphism Asn680Ser on the FSH Receptor and Abnormal Ovarian Response in Patients with Normal Values of AMH and AFC

Author:

Baldini Giorgio MariaORCID,Catino AssuntaORCID,Palini SimoneORCID,Sciorio Romualdo,Ferri DanieleORCID,Vinciguerra Marina,Baldini DomenicoORCID

Abstract

After the controlled ovarian stimulation (COS), the number of cumulus oocyte complexes collected is lower than predicted. The aim of this study is to understand if there is a possible reason for that deficient ovarian response. It was hypothesized that this is associated with the SNP (single-nucleotide polymorphism) of the FSH receptor (FSHr), specifically c.2039A > G, resulting in Asn680Ser. Two groups of patients were enrolled for this purpose: the normal (n = 36) and abnormal responses (n = 31). To predict the number of retrievable oocytes, according to the anti-Mũllerian hormone (AMH) and the antral follicle count (AFC), the following formula was applied in a log scale: the number of oocytes retrieved = 2.584 − 0.015 × (age) − 0.035 × (FSH) + 0.038 × (AMH) + 0.026 × (AFC). Then, when the number of oocytes collected was less than 50% of the calculated value, it was proposed that the patients result in an abnormal response. DNA sample blood was collected from the women, and then the genetic assessment for the Asn680Ser of the FSHr was evaluated in both groups. The differences between the two categories were statistically analyzed with an independent samples t test, a Mann–Whitney U test and a Chi-squared test. In a patient with an abnormal response, a significant prevalence of the amino acid serine at position 680 of the FSHr compared to the counterpart group (p < 0.05) was detected. In conclusion, according to the results, the genetic evaluation of the FSHr could represent an accurate and predictive feature for patients undergoing assisted reproductive technology treatment.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3