Study on the Interaction of a Peptide Targeting Specific G-Quadruplex Structures Based on Chromatographic Retention Behavior

Author:

Wang Ju,Qiao Junqin,Zheng Weijuan,Lian HongzhenORCID

Abstract

G-quadruplexes (G4s) are of vital biological significance and G4-specific ligands with conformational selectivity show great application potential in disease treatment and biosensing. RHAU, a RNA helicase associated with AU-rich element, exerts biological functions through the mediation of G4s and has been identified to be a G4 binder. Here, we investigated the interactions between the RHAU peptide and G4s with different secondary structures using size exclusion chromatography (SEC) in association with circular dichroism (CD), ultraviolet-visible (UV-Vis) absorption, and native polyacrylamide gel electrophoresis (Native-PAGE). Spectral results demonstrated that the RHAU peptide did not break the main structure of G4s, making it more reliable for G4 structural analysis. The RHAU peptide was found to display a structural selectivity for a preferential binding to parallel G4s as reflected by the distinct chromatographic retention behaviors. In addition, the RHAU peptide exhibited different interactions with intermolecular parallel G4s and intramolecular parallel G4s, providing a novel recognition approach to G4 structures. The findings of this study enriched the insight into the binding of RHAU to G4s with various conformations. It is noteworthy that SEC technology can be easy and reliable for elucidating G4–peptide interactions, especially for a multiple G4 coexisting system, which supplied an alternative strategy to screen novel specific ligands for G4s.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3