Affiliation:
1. Collaborative Research Center—Additive Manufacturing (CRC 814), Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany
2. Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany
Abstract
To develop new areas of application for laser-based powder bed fusion of polymers (PBF-LB/P), a deeper process understanding of the resulting mechanical properties, particularly for thin-walled and complex structures, is needed. This work addresses the influence of part thickness and orientation in detail. For a general understanding, two PBF systems were used. For comparison, the normalized energy density was determined for specimens of various thicknesses and orientations. It could be seen that the normalized energy density exhibited opposing trends for the two systems for progressively thinner samples. During the process, the exposure temperature development was observed using an infrared camera for a greater understanding of the developing part properties. To further investigate the fracture behavior, an infrared camera was used during tensile testing, which revealed various patterns depending on the PBF-System used. The results showed a machine-dependent difference in the exposure temperatures and elongation at break for z-oriented parts. While the surface roughness was independent of the thickness, the density, porosity, and the mechanical properties were affected significantly by the part thickness. The parts showed a brittle breaking behavior with a crack initiation from the short side of the tensile bar. These results improved process expertise, and in particular the mechanical performance of thin-walled structures caused by temperature variations in PBF-LB/P.
Funder
Deutsche Forschungsgemeinschaft
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献