Continuous Simulation of Highly Urbanized Watershed to Quantify Nutrients’ Loadings

Author:

Mahdi Naila,Pagilla Krishna R.

Abstract

The United States has witnessed various extreme land use changes over the years. These changes led to alterations in watersheds’ characteristics, impacting their water quality and quantity. To quantify this impact in highly urbanized watersheds such as the Chicago Metropolitan Area, it is crucial to examine the characteristics and imperviousness distribution of urban land uses and available point and non-point sources. In this paper, the effect of urban runoff and nutrient loadings to water bodies in the Chicago River Watershed resulting from level (III) detailed urban land uses is investigated. A watershed scale hydrologic and water quality simulation using BASINS/HSPF model was developed for the highly urbanized watershed. Appropriate considerations were given to the effective impervious area (EIA). The results from the five-year calibrated water quality simulation were reasonably reflected with observed data in the study area and nutrient loadings of both point and non-point sources for 44 different land uses were found. The export coefficients (EC) values obtained are site-specific depending on conditions and variables at the watershed level such as physical characteristics, land use management practices, hydro-meteorological and topographical data, while using a continuous simulation approach and watershed perspective analysis. This is the first attempt to measure and model nutrients’ loadings using detailed land use types in the Chicago River Watershed. The proposed continuous calibrated and validated model can be used in the investigation and analysis of different scenarios and possible future conditions and land utilization.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3