Intra-Soil Milling for Stable Evolution and High Productivity of Kastanozem Soil

Author:

Kalinitchenko Valery PetrovichORCID,Glinushkin Alexey PavlovichORCID,Sharshak Vladimir Konstantinovich,Ladan Evgene Panteleimonovich,Minkina Tatiana MikhailovnaORCID,Sushkova Svetlana NikolaevnaORCID,Mandzhieva Saglara SergeevnaORCID,Batukaev Abdulmalik Abdulkhamidovich,Chernenko Vladimir Vladimirovich,Ilyina Ljudmila Pavlovna,Kosolapov Vladimir Mikhailovich,Barbashev Andrei Igorevich,Antonenko Elena Mikhailovna

Abstract

The long-term field experiment on the Kastanozem showed that the standard moldboard plowing to a depth of 22 cm (control), chiseling to a depth of 35 cm, and three-tier plowing (machine type PTN–40) to a depth of 45 cm was incapable of providing a stable soil structure and aggregate system. The transcendental Biogeosystem Technique (BGT*) methodology for intra-soil milling of the 20–45 cm layer and the intra-soil milling PMS–70 machine were developed. The PMS–70 soil processing provided the content of 1–3 mm sized aggregate particle fraction in the illuvial horizon of about 50 to 60%, which was 3-fold higher compared to standard plowing systems. Soil bulk density reduced in the layer 20–40 cm to 1.35 t m−3 compared to 1.51 t m−3 in the control option. In the control, the rhizosphere developed only in the soil upper layer. There were 1.3 roots per cm2 in 0–20 cm, and 0.2 roots per cm2 in 20–40 cm. The rhizosphere spreads only through the soil crevices after chilling. After three-tier plowing (PTN–40), the rhizosphere developed better in the local comfort zones of the soil profile between soil blocks impermeable for roots. After intra-soil milling PMS–70, the rhizosphere developed uniformly in the whole soil profile: 2.2 roots per cm2 in 0–20 cm; 1.7 roots per cm2 in 20–40 cm. Matric water potential was higher, soil salinization was lower, and the pH was close to neutral. Soil organic matter (SOM) content increased to 3.3% in 0–20 cm and 2.1% in 20–40 cm compared to the control (2.0% in the 0–20 cm soil layer and 1.3% in the 20–40 cm layer). The spring barley yield was 53% higher compared to the control. The technology life cycle profitability was moldboard 21.5%, chiseling 6.9%, three-tier 15.6%, and intra-soil milling 45.6%. The new design of the intra-soil milling machine provides five times less traction resistance and 80% increased reliability, halving energy costs.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3