Integrated Management and Environmental Impact Assessment of Sustainable Groundwater-Dependent Development in Toshka District, Egypt

Author:

Aly Marwa M.1,Abd Elhamid Ahmed M. I.2ORCID,Abu-Bakr Heba Abdel-Aziz3,Shalby Ahmed4ORCID,Fayad Shymaa A. K.15

Affiliation:

1. Faculty of Engineering Matareya, Helwan University, Cairo 11718, Egypt

2. Hydraulics Research Institute, National Water Research Center, MWRI, Cairo 13621, Egypt

3. Research Institute for Groundwater, National Water Research Centre, MWRI, Cairo 13621, Egypt

4. Faculty of Engineering, Tanta University, Tanta 31521, Egypt

5. Division of Engineering, International Academy for Engineering and Media Science (IAEMS), 6th of October City 15515, Egypt

Abstract

Egypt has recently inaugurated a mega development project aiming to alleviate the overpopulation along the Nile River and to meet the looming food gap. Toshka is a promising area where groundwater-dependent activities are being expanded adjacent to Lake Nasser. Thus, it is of utmost importance to provide a sustainable development approach and to assess the resulting environmental implications. Accordingly, a coupled groundwater flow and transport model was invoked. The generated model was successfully calibrated for the observed water levels and salinity. The proposed exploitation regime of 102 wells each pumping 1000 m3/day was simulated for a 100-year test period. The maximum resulting drawdown was about 25 m, compatible with the advocated sustainable restriction limit. Climate change (CC) impacts of reducing the lake’s storage and increasing the crops’ water requirements were investigated. The lake’s water level fluctuations were a key factor in the aquifer hydraulics and flow direction. The drawdown breakthrough considering the CC catastrophic scenario (RCP8.5) has increased by about 20%. The developed solute transport model was utilized to simulate the salinity spatial distribution and the lateral movement of leaking pollutants from the underway activities. Cultivation activities were found feasible up to 80 km away from the lake border where salinity does not exceed 2000 ppm. Yet, a protection strip of not less than 4.8, 6.0, and 7.2 km according to the lake operating condition is inevitable to ensure that pollutants do not intrude into the lake. These findings will assist the decision-makers in scheming environmental impact assessment criteria for sustainable development.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3