Author:
Qu Li-Hua,Fu Xiao-Long,Zhong Chong-Gui,Zhou Peng-Xia,Zhang Jian-Min
Abstract
We report first-principles calculations on the structural, mechanical, and electronic properties of O2 molecule adsorption on different graphenes (including pristine graphene (G–O2), N(nitrogen)/B(boron)-doped graphene (G–N/B–O2), and defective graphene (G–D–O2)) under equibiaxial strain. Our calculation results reveal that G–D–O2 possesses the highest binding energy, indicating that it owns the highest stability. Moreover, the stabilities of the four structures are enhanced enormously by the compressive strain larger than 2%. In addition, the band gaps of G–O2 and G–D–O2 exhibit direct and indirect transitions. Our work aims to control the graphene-based structure and electronic properties via strain engineering, which will provide implications for the application of new elastic semiconductor devices.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献