Biocompatible Nanocomposite Enhanced Osteogenic and Cementogenic Differentiation of Periodontal Ligament Stem Cells In Vitro for Periodontal Regeneration

Author:

Liu Jin,Dai Quan,Weir Michael D.,Schneider Abraham,Zhang Charles,Hack Gary D.,Oates Thomas W.,Zhang KeORCID,Li Ang,Xu Hockin H. K.

Abstract

Decays in the roots of teeth is prevalent in seniors as people live longer and retain more of their teeth to an old age, especially in patients with periodontal disease and gingival recession. The objectives of this study were to develop a biocompatible nanocomposite with nano-sized calcium fluoride particles (Nano-CaF2), and to investigate for the first time the effects on osteogenic and cementogenic induction of periodontal ligament stem cells (hPDLSCs) from human donors.Nano-CaF2 particles with a mean particle size of 53 nm were produced via a spray-drying machine.Nano-CaF2 was mingled into the composite at 0%, 10%, 15% and 20% by mass. Flexural strength (160 ± 10) MPa, elastic modulus (11.0 ± 0.5) GPa, and hardness (0.58 ± 0.03) GPa for Nano-CaF2 composite exceeded those of a commercial dental composite (p < 0.05). Calcium (Ca) and fluoride (F) ions were released steadily from the composite. Osteogenic genes were elevated for hPDLSCs growing on 20% Nano-CaF2. Alkaline phosphatase (ALP) peaked at 14 days. Collagen type 1 (COL1), runt-related transcription factor 2 (RUNX2) and osteopontin (OPN) peaked at 21 days. Cementogenic genes were also enhanced on 20% Nano-CaF2 composite, promoting cementum adherence protein (CAP), cementum protein 1 (CEMP1) and bone sialoprotein (BSP) expressions (p < 0.05). At 7, 14 and 21 days, the ALP activity of hPDLSCs on 20% Nano-CaF2 composite was 57-fold, 78-fold, and 55-fold greater than those of control, respectively (p < 0.05). Bone mineral secretion by hPDLSCs on 20% Nano-CaF2 composite was 2-fold that of control (p < 0.05). In conclusion, the novel Nano-CaF2 composite was biocompatible and supported hPDLSCs. Nano-CaF2 composite is promising to fill tooth root cavities and release Ca and F ions to enhance osteogenic and cementogenic induction of hPDLSCs and promote periodontium regeneration.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3