Microstructure and Texture Evolution of Mg-Gd-Y-Zr Alloy during Reciprocating Upsetting-Extrusion

Author:

Wu Guoqin,Yu Jianmin,Jia Leichen,Xu Wenlong,Dong Beibei,Zhang Zhimin,Hao Biying

Abstract

Reciprocating Upsetting-Extrusion (RUE) deformation process can significantly refine the grains size and weaken the basal plane texture by applying a large cumulative strain to the alloy, which is of great significance to weaken the anisotropy of magnesium (Mg) alloys and increase the application range. In this paper, the Mg-8.27Gd-3.18Y-0.43Zr (wt %) alloy was subjected to isothermal multi-passes RUE. The microstructure and texture evolution, crystal orientation-dependent deformation mechanism of the alloy after deformation were investigated. The results clearly show that with the increase of RUE process, the grains are significantly refined through continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) mechanisms, the uniformity of the microstructure is improved, and the texture intensity is reduced. At the same time, a large number of particle phases are dynamically precipitated during the deformation process, promoting grain refinement by the particle-stimulated nucleation (PSN) mechanism. The typical [10-10] fiber texture is produced after one pass due to the basal plane of the deformed grains with a relatively high proportion is gradually parallel to the ED during extrusion process. However, the texture concentration is reduced compared with the traditional extrusion deformation, indicating that the upsetting deformation has a certain delay effect on the subsequent extrusion texture generation. After three or four passes deformation, the grain orientation is randomized due to the continuous progress of the dynamic recrystallization process.

Publisher

MDPI AG

Subject

General Materials Science

Reference36 articles.

1. Research progress of high strength and heat resistant Mg-Gd-Y-Zr alloys;Wu;Trans. Nonferrous Met. Soc. China,2011

2. Effect of Isothermal Repetitive Upsetting Extrusion on the Microstructure of Mg-12.0Gd-4.5Y-2.0Zn-0.4Zr Alloy

3. The Application of Magnesium and Magnesium Alloy Materials and the Development of Their Processing Technigues;Liu;Sichuan Nonferrous Met.,2007

4. Microstructure and texture of coarse-grained Mg–Gd–Y–Nd–Zr alloy after hot compression

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3