Carbon/Silicone Nanocomposite-Enabled Soft Pressure Sensors with a Liquid-Filled Cell Structure Design for Low Pressure Measurement

Author:

Wang FeiORCID,Tao XiaomingORCID

Abstract

In the fields of humanoid robots, soft robotics, and wearable electronics, the development of artificial skins entails pressure sensors that are low in modulus, high in sensitivity, and minimal in hysteresis. However, few sensors in the literature can meet all the three requirements, especially in the low pressure range (<10 kPa). This article presents a design for such pressure sensors. The bioinspired liquid-filled cell-type structural design endows the sensor with appropriate softness (Young’s modulus < 230 kPa) and high sensitivity (highest at 0.7 kPa−1) to compression forces below 0.65 N (6.8 kPa). The low-end detection limit is ~0.0012 N (13 Pa), only triple the mass of a bee. Minimal resistance hysteresis of the pressure sensor is 7.7%. The low hysteresis is attributed to the study on the carbon/silicone nanocomposite, which reveals the effect of heat treatment on its mechanical and electromechanical hysteresis. Pressure measurement range and sensitivity of the sensor can be tuned by changing the structure and strain gauge parameters. This concept of sensor design, when combined with microfluidics technology, is expected to enable soft, stretchable, and highly precise touch-sensitive artificial skins.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3