Abstract
Nuclear factor-κB (NF-κB) is an important transcription factor involved in various biological functions, including tumorigenesis. Hence, NF-κB has attracted attention as a target factor for cancer treatment, leading to the development of several inhibitors. However, existing NF-κB inhibitors do not discriminate between its subunits, namely, RelA, RelB, cRel, p50, and p52. Conventional methods used to evaluate interactions between transcription factors and DNA, such as electrophoretic mobility shift assay and luciferase assays, are unsuitable for high-throughput screening (HTS) and cannot distinguish NF-κB subunits. We developed a HTS method named DNA strand exchange fluorescence resonance energy transfer (DSE-FRET). This assay is suitable for HTS and can discriminate a NF-κB subunit. Using DSE-FRET, we searched for RelA-specific inhibitors and verified RelA inhibition for 32,955 compounds. The compound A55 (2-(3-carbamoyl-6-hydroxy-4-methyl-2-oxopyridin-1(2H)-yl) acetic acid) selectively inhibited RelA–DNA binding. We propose that A55 is a seed compound for RelA-specific inhibition and could be used in clinical applications.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference49 articles.
1. Shared Principles in NF-κB Signaling
2. Transcriptional up-regulation of matrix metalloproteinase-9 expression during spontaneous epithelial to neuroblast phenotype conversion by SK-N-SH neuroblastoma cells, involved in enhanced invasivity, depends upon GT-box and nuclear factor kappaB elements;Farina;Cell Growth Differ. Publ. Am. Assoc. Cancer Res.,1999
3. A labile repressor acts through the NFkB-like binding sites of the human urokinase gene
4. NF-kappa B subunit-specific regulation of the interleukin-8 promoter.
5. NF-κB Controls Cell Growth and Differentiation through Transcriptional Regulation of Cyclin D1
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献