Abstract
Macrophages are crucial not only for initiation of inflammation and pathogen eradication (classically polarized M1 macrophages), but also for inflammation inhibition and tissue regeneration (alternatively polarized M2 macrophages). Their polarization toward the M1 population occurs under the influence of interferon-γ + lipopolysaccharide (IFN-γ + LPS), while alternatively polarized M2 macrophages evolve upon, e.g., interlukin 4 (IL-4) or cortisol stimulation. This in vitro study focused on a possible role for macrophage-derived cortisol in M1/M2 polarization in common carp. We studied the expression of molecules involved in cortisol synthesis/conversion from and to cortisone like 11β-hydroxysteroid dehydrogenase type 2 and 3. (11β-HSD2 and 3) and 11β-hydroxylase (CYP11b), as well as the expression of glucocorticoid receptors (GRs) and proliferator-activated receptor gamma (PPARγ) in M1 and M2 macrophages. Lastly, we analyzed how inhibition of these molecules affect macrophage polarization. In M1 cells, upregulation of gene expression of GRs and 11β-HSD3 was found, while, in M2 macrophages, expression of 11β-hsd2 was upregulated. Moreover, blocking of cortisol synthesis/conversion and GRs or PPARγ induced changes in expression of anti-inflammatory interleukin 10 (IL-10). Consequently, our data show that carp monocytes/macrophages can convert cortisol. The results strongly suggest that cortisol, via intracrine interaction with GRs, is important for IL-10-dependent control of the activity of macrophages and for the regulation of M1/M2 polarization to finally determine the outcome of an infection.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献