Deep Reinforcement Learning for Resilient Power and Energy Systems: Progress, Prospects, and Future Avenues

Author:

Gautam Mukesh1ORCID

Affiliation:

1. Power and Energy Systems Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA

Abstract

In recent years, deep reinforcement learning (DRL) has garnered substantial attention in the context of enhancing resilience in power and energy systems. Resilience, characterized by the ability to withstand, absorb, and quickly recover from natural disasters and human-induced disruptions, has become paramount in ensuring the stability and dependability of critical infrastructure. This comprehensive review delves into the latest advancements and applications of DRL in enhancing the resilience of power and energy systems, highlighting significant contributions and key insights. The exploration commences with a concise elucidation of the fundamental principles of DRL, highlighting the intricate interplay among reinforcement learning (RL), deep learning, and the emergence of DRL. Furthermore, it categorizes and describes various DRL algorithms, laying a robust foundation for comprehending the applicability of DRL. The linkage between DRL and power system resilience is forged through a systematic classification of DRL applications into five pivotal dimensions: dynamic response, recovery and restoration, energy management and control, communications and cybersecurity, and resilience planning and metrics development. This structured categorization facilitates a methodical exploration of how DRL methodologies can effectively tackle critical challenges within the domain of power and energy system resilience. The review meticulously examines the inherent challenges and limitations entailed in integrating DRL into power and energy system resilience, shedding light on practical challenges and potential pitfalls. Additionally, it offers insights into promising avenues for future research, with the aim of inspiring innovative solutions and further progress in this vital domain.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3