Optimal Placement and Sizing of Battery Energy Storage Systems for Improvement of System Frequency Stability

Author:

Parajuli Amrit1ORCID,Gurung Samundra1,Chapagain Kamal1

Affiliation:

1. Department of Electrical and Electronics Engineering, Kathmandu University, Dhulikhel 6250, Nepal

Abstract

Modern power systems are growing in complexity due to the installation of large generators, long transmission lines, the addition of inertialess renewable energy resources (RESs) with zero inertia, etc., which can all severely degrade the system frequency stability. This can lead to under-/over-frequency load shedding, damage to turbine blades, and affect frequency-sensitive loads. In this study, we propose a methodology to improve the two critical frequency stability indices, i.e., the frequency nadir and the rate of change of frequency (RoCoF), by formulating an optimization problem. The size and placement location of battery energy storage systems (BESSs) are considered to be the constraints for the proposed optimization problem. Thereafter, the optimization problem is solved using the three metaheuristic optimization algorithms: the particle swarm optimization, firefly, and bat algorithm. The best performing algorithm is then selected to find the optimal sizing and placement location of the BESSs. The analyses are all performed on the IEEE 9-bus and IEEE 39-bus test systems. Several scenarios which consider multiple generator outages, increased/decreased loading conditions, and the addition of RESs are also considered for both test systems in this study. The obtained results show that under all scenarios, the proposed method can enhance system frequency compared to the existing method and without BESSs. The proposed method can be easily upscaled for a larger electrical network for obtaining the optimized BESS size and location for the improvement of the system frequency stability.

Publisher

MDPI AG

Reference37 articles.

1. Kundur, P. (2010). Power System Stability and Control, McGraw-Hill, Inc.

2. Definition and Classification of Power System Stability—Revisited & Extended;Hatziargyriou;IEEE Trans. Power Syst.,2021

3. A Comprehensive Review of Stationary Energy Storage Devices for Large Scale Renewable Energy Sources Grid Integration;Kebede;Renew. Sustain. Energy Rev.,2022

4. Energy Storage Systems: A Review;Mitali;Energy Storage Sav.,2022

5. A Review of Modeling and Applications of Energy Storage Systems in Power Grids;Calero;Proc. IEEE,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3