Abstract
In this study, a beta-barium borate sensing head (BBO-SH) was fabricated and evaluated for the measurements of fluidic concentration variations by using a non-invasive technique. The BBO-SH could be coupled to a fluidic container through thin interlayer water in a heterodyne interferometer based on the phase interrogation. To ensure the sensing head’s stability, the package of BBO-SH uses the prism and the coverslip bounded with UV glue, which can resist environmental damage due to moisture. After each use, the sensing head could be easily cleaned. The sensitivity of the BBO-SH remained stable after repeated measurements over a period of 139 days. Finally, the achievable measurement resolutions of the concentration and refractive index are 52 ppm and 1 × 10−6 RIU, respectively, for the sodium chloride solution. The achievable measurement resolutions of the concentration and refractive index were 55 ppm and 8.8 × 10−7 RIU, respectively, for the hydrochloric acid solution.
Funder
National Science and Technology Council
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry