Carbon Dioxide Concentration and Emissions along a Trophic Gradient in Tropical Karst Lakes

Author:

Vargas-Sánchez MarianaORCID,Alcocer Javier,Sánchez-Carrillo Salvador,Oseguera Luis A.ORCID,Rivera-Herrera Erika M.,Soria-Reinoso IsmaelORCID,Guzmán-Arias Andrea,García-Oliva FelipeORCID,Merino-Ibarra MartínORCID

Abstract

Inland aquatic ecosystems are valuable sentinels of anthropic-associated changes (e.g., agriculture and tourism). Eutrophication has become of primary importance in altering aquatic ecosystem functioning. Quantifying the CO2 emissions by inland aquatic ecosystems of different trophic statuses may provide helpful information about the role of eutrophication on greenhouse gas emissions. This study investigated diel and seasonal carbon dioxide (CO2) concentrations and emissions in three tropical karst lakes with different trophic statuses. We measured CO2 emissions using static floating chambers twice daily during the rainy/warm and dry/cold seasons while the lakes were thermally stratified and mixed, respectively. The CO2 concentration was estimated by gas chromatography and photoacoustic spectroscopy. The results showed a significant seasonal variation in the dissolved CO2 concentration (CCO2) and the CO2 flux (FCO2), with the largest values in the rainy/warm season but not along the diel cycle. The CCO2 values ranged from 13.3 to 168.6 µmol L−1 averaging 41.9 ± 35.3 µmol L−1 over the rainy/warm season and from 12.9 to 38.0 µmol L−1 with an average of 21.0 ± 7.2 µmol L−1 over the dry/cold season. The FCO2 values ranged from 0.2 to 12.1 g CO2 m−2 d−1 averaging 4.9 ± 4.0 g CO2 m−2 d−1 over the rainy/warm season and from 0.1 to 1.7 g CO2 m−2 d−1 with an average of 0.8 ± 0.5 g CO2 m−2 d−1 over the dry/cold season. During the rainy/warm season the emission was higher in the eutrophic lake San Lorenzo (9.1 ± 1.2 g CO2 m−2 d−1), and during the dry/cold the highest emission was recorded in the mesotrophic lake San José (1.42 ± 0.2 g CO2 m−2 d−1). Our results indicated that eutrophication in tropical karst lakes increased CO2 evasion rates to the atmosphere mainly due to the persistence of anoxia in most of the lake’s water column, which maintained high rates of anaerobic respiration coupled with the anaerobic oxidation of methane. Contrarily, groundwater inflows that provide rich-dissolved inorganic carbon waters sustain emissions in meso and oligotrophic karstic tropical lakes.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference75 articles.

1. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget;Cole;Ecosystems,2007

2. Erratum: Biophysical controls on organic carbon fluxes in fluvial networks;Battin;Nat. Geosci.,2009

3. Lakes and reservoirs as regulators of carbon cycling and climate;Tranvik;Limnol. Oceanogr.,2009

4. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting;Butman;Proc. Natl. Acad. Sci. USA,2015

5. Tarbuck, E.J., Lutgens, F.K., and Tasa, D.G. (2013). Earth: An Introduction to Physical Geology, Pearson. [11th ed.].

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3