Develop a Lightweight Convolutional Neural Network to Recognize Palms Using 3D Point Clouds

Author:

Zhang Yu-Ming1ORCID,Cheng Chia-Yuan1,Lin Chih-Lung23ORCID,Lee Chun-Chieh1,Fan Kuo-Chin1

Affiliation:

1. Department of Computer Science and Information Engineering, National Central University, Taoyuan 320, Taiwan

2. Department of Computer Science and Information Engineering, Hwa Hsia University of Technology, New Taipei 173, Taiwan

3. Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei 100, Taiwan

Abstract

Biometrics has become an important research issue in recent years, and the use of deep learning neural networks has made it possible to develop more reliable and efficient recognition systems. Palms have been identified as one of the most promising candidates among various biometrics due to their unique features and easy accessibility. However, traditional palm recognition methods involve 3D point clouds, which can be complex and difficult to work with. To mitigate this challenge, this paper proposes two methods which are Multi-View Projection (MVP) and Light Inverted Residual Block (LIRB).The MVP simulates different angles that observers use to observe palms in reality. It transforms 3D point clouds into multiple 2D images and effectively reduces the loss of mapping 3D data to 2D data. Therefore, the MVP can greatly reduce the complexity of the system. In experiments, MVP demonstrated remarkable performance on various famous models, such as VGG or MobileNetv2, with a particular improvement in the performance of smaller models. To further improve the performance of small models, this paper applies LIRB to build a lightweight 2D CNN called Tiny-MobileNet (TMBNet).The TMBNet has only a few convolutional layers but outperforms the 3D baselines PointNet and PointNet++ in FLOPs and accuracy. The experimental results show that the proposed method can effectively mitigate the challenges of recognizing palms through 3D point clouds of palms. The proposed method not only reduces the complexity of the system but also extends the use of lightweight CNN. These findings have significant implications for developing biometrics and could lead to improvements in various fields, such as access control and security control.

Funder

National Science and Technology Council of Funder

Publisher

MDPI AG

Subject

Information Systems

Reference30 articles.

1. Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv.

2. He, K., Zhang, X., Ren, S., and Sun, J. (2016, January 27–30). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA.

3. Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K.Q. (2017, January 21–26). Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA.

4. Tan, M., and Le, Q. (2019, January 9–15). Efficientnet: Rethinking model scaling for convolutional neural networks. Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA.

5. Qi, C.R., Su, H., Mo, K., and Guibas, L.J. (2017, January 21–26). Pointnet: Deep learning on point sets for 3d classification and segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3