Regularized Mislevy-Wu Model for Handling Nonignorable Missing Item Responses

Author:

Robitzsch Alexander12ORCID

Affiliation:

1. Department of Educational Measurement and Data Science, IPN—Leibniz Institute for Science and Mathematics Education, Olshausenstraße 62, 24118 Kiel, Germany

2. Centre for International Student Assessment (ZIB), Olshausenstraße 62, 24118 Kiel, Germany

Abstract

Missing item responses are frequently found in educational large-scale assessment studies. In this article, the Mislevy-Wu item response model is applied for handling nonignorable missing item responses. This model allows that the missingness of an item depends on the item itself and a further latent variable. However, with low to moderate amounts of missing item responses, model parameters for the missingness mechanism are difficult to estimate. Hence, regularized estimation using a fused ridge penalty is applied to the Mislevy-Wu model to stabilize estimation. The fused ridge penalty function is separately defined for multiple-choice and constructed response items because previous research indicated that the missingness mechanisms strongly differed for the two item types. In a simulation study, it turned out that regularized estimation improves the stability of item parameter estimation. The method is also illustrated using international data from the progress in international reading literacy study (PIRLS) 2011 data.

Publisher

MDPI AG

Subject

Information Systems

Reference53 articles.

1. Lietz, P., Cresswell, J.C., Rust, K.F., and Adams, R.J. (2017). Implementation of Large-Scale Education Assessments, Wiley.

2. Rutkowski, L., von Davier, M., and Rutkowski, D. (2013). A Handbook of International Large-Scale Assessment: Background, Technical Issues, and Methods of Data Analysis, Chapman Hall/CRC Press.

3. Martin, M.O., Mullis, I.V., and Hooper, M. (2017). Methods and Procedures in PIRLS 2016, IEA.

4. Martin, M.O., Mullis, I.V., and Hooper, M. (2016). Methods and Procedures in TIMSS 2015, IEA.

5. OECD (2020). PISA 2018. Technical Report, OECD. Available online: https://bit.ly/3zWbidA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3