Role of Prostaglandins in Nitric Oxide-Induced Glial Cell-Mediated Vasodilation in Rat Retina

Author:

Mori AsamiORCID,Seki Haruka,Mizukoshi Satoru,Uezono Takashi,Sakamoto Kenji

Abstract

We previously identified that NO derived from neuronal cells acts on glial cells and causes vasodilation in the healthy rat retina via the release of epoxyeicosatrienoic acids (EETs) and prostaglandins (PGs) by activation of the arachidonic acid cascade. However, it is not clear which PG types are involved in these responses. The aim of the present study was to identify prostanoid receptors involved in glial cell-derived vasodilation induced by NO in rat retina. Male Wistar rats were used to examine the effects of intravitreal pretreatment with indomethacin, a cyclooxygenase inhibitor; PF-04418948, a prostanoid EP2 receptor antagonist; and CAY10441, a prostanoid IP receptor antagonist, on the changes in the retinal arteriolar diameter induced by intravitreal administration of NOR3, an NO donor. Retinal arteriolar diameters were measured using ocular fundus images captured with a high-resolution digital camera in vivo. The increase in the retinal arteriolar diameter induced by intravitreal injection of NOR3 was significantly suppressed by intravitreal pretreatment with indomethacin and PF-04418948, but not by CAY10441. The dose of PF-04418948 and CAY10441 injected intravitreally in the present study significantly reduced the increase in the retinal arteriolar diameter induced by prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2), respectively. These results suggest that activation of the arachidonic acid cascade and subsequent stimulation of prostanoid EP2 receptors are involved in rat retinal vasodilatory responses evoked by NO-induced glial cell stimulation. Therefore, glial cell-derived PGE2, similar to EETs, may play an important role in retinal vasodilatory mechanisms.

Funder

The Ministry of Education, Culture, Sports, Science, and Technology of Japan

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3