How Streptococcus mutans Affects the Surface Topography and Electrochemical Behavior of Nanostructured Bulk Ti

Author:

Sotniczuk Agata,Jastrzębska AgnieszkaORCID,Chlanda AdrianORCID,Kwiatek AgnieszkaORCID,Garbacz Halina

Abstract

The metabolization of carbohydrates by Streptococcus mutans leads to the formation of lactic acid in the oral cavity, which can consequently accelerate the degradation of dental implants fabricated from commercially available microcrystalline Ti. Microstructure influences surface topography and hence interaction between bacteria cells and Ti surfaces. This work offers the first description of the effect of S. mutans on the surface topography and properties of nanostructured bulk Ti, which is a promising candidate for modern narrow dental implants owing to its superior mechanical strength. It was found that S. mutans incubation resulted in the slight, unexpected decrease of surface nanoroughness, which was previously developed owing to privileged oxidation in areas of closely spaced boundaries. However, despite the changes in nanoscale surface topography, bacteria incubation did not reduce the high level of protection afforded by the oxide layer formed on the nanostructured Ti surface. The results highlight the need–hitherto ignored–to consider Ti microstructure when analyzing its behavior in the presence of carbohydrate-metabolizing bacteria.

Funder

Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3