Identification of Biological Functions and Prognostic Value of NNMT in Oral Squamous Cell Carcinoma

Author:

Zhang Weixian,Jing Yue,Wang ShuaiORCID,Wu Yan,Sun YaweiORCID,Zhuang Jia,Huang Xiaofeng,Chen Sheng,Zhang Xiaoxin,Song Yuxian,Hu Qingang,Ni Yanhong

Abstract

Background: Nicotinamide N-methyltransferase (NNMT) is a metabolic enzyme that catalyzes the methylation of nicotinamide (NAM) to generate 1-methyl nicotinamide (MNAM). Although previous studies have shown that NNMT is frequently dysregulated to promote the onset and progression of many malignancies, its expression profile, prognostic value and function in oral squamous cell carcinoma (OSCC) are still unknown. Methods: We used untargeted metabolomics based on mass spectrometry to analyze potential metabolite differences between tumors and matched adjacent normal tissues in 40 OSCC patients. Immunohistochemistry (IHC) was used to analyze the NNMT expression profile in OSCC, and the diagnostic and prognostic values of NNMT were evaluated. Next, qPCR and Western blot were used to compare the expression of NNMT in five OSCC cell lines. Stable transfected cell lines were constructed, and functional experiments were carried out to elucidate the effects of NNMT on the proliferation and migration of OSCC cells. Finally, gene set enrichment analysis (GSEA) was performed using The Cancer Genome Atlas (TCGA) data to investigate the potential functional mechanisms of NNMT in OSCC. Results: We found that the nicotinamide metabolic pathway was abnormally activated in OSCC tumor tissues compared with normal tissues. NNMT was expressed ubiquitously in tumor cells (TCs) and fibroblast-like cells (FLCs) but was absent in tumor-infiltrating lymphocytes (TILs). OSCC patients with highly expressed NNMT in TCs had higher risk of lymph node metastasis and showed a worse pattern of invasion (POI). Moreover, patients with highly expressed NNMT were also susceptible to postoperative recurrence. Highly expressed NNMT can independently predict shorter disease-free survival and recurrence-free survival. Functionally, we demonstrated that the ectopic expression of NNMT promoted OSCC tumor cell proliferation and migration in vitro. Conversely, silencing exerted significantly opposite effects in vitro. In addition, GSEA showed that highly expressed NNMT was mainly enriched in the epithelial–mesenchymal transformation (EMT) pathway, which displayed a significant positive correlation with the six classic EMT markers. Conclusions: Our study uncovered that NNMT may be a critical regulator of EMT in OSCC and may serve as a prognostic biomarker for OSCC patients. These findings might provide novel insights for future research in NNMT-targeted OSCC metastasis and recurrence therapy.

Funder

National Natural Science Foundation of China

the Key Research and Development Projects in Jiangsu Province

Nanjing Medical Science and Technique Development Foundation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3