Abstract
Verticillium dahliae is one of the most destructive fungal pathogens, causing substantial economic losses in agriculture and forestry. The use of plant growth-promoting rhizobacteria (PGPR) is an effective and environmentally friendly strategy for controlling diseases caused by V. dahliae. In this study, 90 mm in diameter Petri plates were used to test the effect of volatile organic compounds (VOCs) produced by different concentrations of Pseudomonasaurantiaca ST-TJ4 cells suspension on V. dahliae mycelia radial growth and biomass. The mycelial morphology was observed by using scanning electron microscopy. The conidia germination and microsclerotia formation of V. dahliae were evaluated. The VOCs with antifungal activity were collected by headspace solid-phase microextraction (SPME), and their components were analyzed by gas chromatography-mass spectrometry (GC-MS). The VOCs produced by strain ST-TJ4 significantly inhibited the growth of mycelium of V. dahliae. The morphology of the hyphae was rough and wrinkled when exposed to VOCs. The VOCs of strain ST-TJ4 have a significant inhibitory effect on V. dahliae conidia germination and microsclerotia formation. At the same time, the VOCs also reduce the expression of genes related to melanin synthesis in V. dahliae. In particular, the expression of the hydrophobin gene (VDAG-02273) was down-regulated the most, about 67-fold. The VOCs effectively alleviate the severity of cotton root disease. In the volatile profile of strain ST-TJ4, 2-undecanone and 1-nonanol assayed in the range 10–200 µL per plate revealed a significant inhibitory effect on V. dahliae mycelial radial growth. These compounds may be useful to devise new control strategies for control of Verticillium wilt disease caused by V. dahliae.
Funder
National Key Research and Development Program of China
Priority Academic Program Development of the Jiangsu Higher Education Institutions
Subject
Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献