Temperature versus Relative Humidity: Which Is More Important for Indoor Mold Prevention?

Author:

Wu Haoxiang,Wong Jonathan Woon Chung

Abstract

Temperature is known as one of the abiotic factors that can affect mold growth. Many mold growth prediction models consider temperature as one of the parameters that can significantly impact mold growth indoors, and hence temperature has been targeted by different indoor mold prevention strategies on different premises. For example, European guidelines for libraries suggest a temperature of 19 °C to preserve books. However, running low temperature air-conditioning (AC) costs substantially more energy, and thus a higher temperature (e.g., 25.5 °C) has been regularly proposed as the recommended indoor temperature for general indoor environments in Hong Kong. It is, therefore, needed to understand whether or not the reduction of indoor temperature would lead to better effectiveness of mold prevention. Using Cladosporium cladosporioides (C. cladosporioides) as the model, its germinating spores were challenged in C. cladosporioides to wet-dry cycles with different combinations of relative humidity (RH, 40%, 60% and 80%) and temperature (19 °C and 28 °C) levels. The survival, lipid peroxidation and catalase (CAT) activity of the treated spores were monitored and compared. C. cladosporioides spores showed similar levels of viability, lipid peroxidation and CAT activity when they were exposed to 19 °C and 28 °C at the same RH, but substantially lower survival and higher oxidative stress were observed under the wet-dry cycles with 40% RH dry periods compared with 60% and 80% RH at both temperatures, suggesting that indoor temperature does not tend to affect the resistance of C. cladosporioides to wet-dry cycles as significantly as the RH level of the dry period. Collectively, this study suggests a more important role for moisture over temperature in indoor mold prevention. The outcome of this study may facilitate the sustainable management of indoor mold problems in buildings.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference18 articles.

1. Mold Growth Modeling of Building Structures Using Sensitivity Classes of Materials;Tuomo;Proceedings of the Thermal Performance of the Exterior Envelopes of Whole Buildings XI International Conference,2016

2. Current challenges for shaping the sustainable and mold‐free hygienic indoor environment in humid regions

3. Influence of Temperature, pH, Water Activity and Antifungal Agents on Growth of Aspergillus flavus and A. parasiticus

4. Prediction of Mold Fungus Formation on the Surface of/and inside Building Components;Klaus,2001

5. Mycotoxin-Forming Ability of Two Penicillium roqueforti Strains in Blue Moldy Tulum Cheese Ripened at Various Temperatures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3