Application of Soft Computing Models with Input Vectors of Snow Cover Area in Addition to Hydro-Climatic Data to Predict the Sediment Loads

Author:

Hussan Waqas,Khurram Shahzad Muhammad,Seidel Frank,Nestmann Franz

Abstract

The accurate estimate of sediment load is important for management of the river ecosystem, designing of water infrastructures, and planning of reservoir operations. The direct measurement of sediment is the most credible method to estimate the sediments. However, this requires a lot of time and resources. Because of these two constraints, most often, it is not possible to continuously measure the daily sediments for most of the gauging sites. Nowadays, data-based sediment prediction models are famous for bridging the data gaps in the estimation of sediment loads. In data-driven sediment predictions models, the selection of input vectors is critical in determining the best structure of models for the accurate estimation of sediment yields. In this study, time series inputs of snow cover area, basin effective rainfall, mean basin average temperature, and mean basin evapotranspiration in addition to the flows were assessed for the prediction of sediment loads. The input vectors were assessed with artificial neural network (ANN), adaptive neuro-fuzzy logic inference system with grid partition (ANFIS-GP), adaptive neuro-fuzzy logic inference system with subtractive clustering (ANFIS-SC), adaptive neuro-fuzzy logic inference system with fuzzy c-means clustering (ANFIS-FCM), multiple adaptive regression splines (MARS), and sediment rating curve (SRC) models for the Gilgit River, the tributary of the Indus River in Pakistan. The comparison of different input vectors showed improvements in the prediction of sediments by using the snow cover area in addition to flows, effective rainfall, temperature, and evapotranspiration. Overall, the ANN model performed better than all other models. However, as regards sediment load peak time series, the sediment loads predicted using the ANN, ANFIS-FCM, and MARS models were found to be closer to the measured sediment loads. The ANFIS-FCM performed better in the estimation of peak sediment yields with a relative accuracy of 81.31% in comparison to the ANN and MARS models with 80.17% and 80.16% of relative accuracies, respectively. The developed multiple linear regression equation of all models show an R2 value of 0.85 and 0.74 during the training and testing period, respectively.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3