Monitoring the Impacts of Human Activities on Urban Ecosystems Based on the Enhanced UCCLN (EUCCLN) Model

Author:

Abbaszadeh Tehrani Nadia1,Farhanj Farinaz1ORCID,Janalipour Milad1ORCID

Affiliation:

1. Assistant Professor, Aerospace Research Institute, Ministry of Science, Research, and Technology, Tehran 1465774111, Iran

Abstract

To have a sustainable city, human pressures on urban ecosystems should not exceed certain thresholds, which are defined by the urban carrying capacity concept. The main goal of this research was to monitor environmental pressures caused by the impacts of human activities on the ecosystem of Tehran city using spatial indicators. According to the enhanced Urban Carrying Capacity Load Number (EUCCLN) model, first, the most related indicators were collected from the open access databases, including satellite products, air quality monitoring stations, municipality statistical yearbook, and a related article. Then, the indicators were classified into air, traffic, and waste groups. Afterwards, the importance coefficients of all indicators were specified using the analytical hierarchy process. Their degree of carrying capacity tables were determined, and finally, load numbers were calculated. The results showed that 100%, 4.55%, and 40.91% of all districts had very high-to-critical degrees in terms of air, traffic, and waste indicators, respectively. The final human-induced pressure degrees were very high-to-critical in Districts 1, 3, 6, 7, 8, 12, and 14 (31.82% out of 22 districts) and high-to-very high in the rest of them. Therefore, the overall pressure in all 22 districts of Tehran had reached or exceeded its maximum threshold degree.

Funder

Tehran Urban Research and Planning Center, Tehran Municipality

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3