Joint Deep Learning and Information Propagation for Fast 3D City Modeling

Author:

Dong Yang1,Song Jiaxuan1,Fan Dazhao1,Ji Song1,Lei Rong1

Affiliation:

1. Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China

Abstract

In the field of geoinformation science, multiview, image-based 3D city modeling has developed rapidly, and image depth estimation is an important step in it. To address the problems of the poor adaptability of training models of existing neural network methods and the long reconstruction time of traditional geometric methods, we propose a general depth estimation method for fast 3D city modeling that combines prior knowledge and information propagation. First, the original image is downsampled and input into the neural network to predict the initial depth value. Then, depth plane fitting and joint optimization are combined with the superpixel information and the superpixel optimized depth value is upsampled to the original resolution. Finally, the depth information propagation is checked pixel-by-pixel to obtain the final depth estimate. Experiments were conducted using multiple image datasets taken from actual indoor and outdoor scenes. Our method was compared and analyzed with a variety of existing widely used methods. The experimental results show that our method maintains high reconstruction accuracy and a fast reconstruction speed, and it achieves better performance. This paper offers a framework to integrate neural networks and traditional geometric methods, which provide a new approach for obtaining geographic information and fast 3D city modeling.

Funder

National Natural Science Foundation of China

Song Shan Laboratory

High-Resolution Remote Sensing, Surveying, and Mapping Application Demonstration System

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3