A Semi-Automatic Semantic-Model-Based Comparison Workflow for Archaeological Features on Roman Ceramics

Author:

Thiery Florian1ORCID,Veller Jonas2ORCID,Raddatz Laura2ORCID,Rokohl Louise3ORCID,Boochs Frank2ORCID,Mees Allard W.1ORCID

Affiliation:

1. Leibniz-Zentrum für Archäologie (LEIZA), Department of Scientific IT and Research Software Engineering, 55116 Mainz, Germany

2. i3mainz—Institute for Spatial Information and Surveying Technology, School of Technology, Hochschule Mainz University of Applied Sciences, 55128 Mainz, Germany

3. Leibniz-Zentrum für Archäologie (LEIZA), 55116 Mainz, Germany

Abstract

In this paper, we introduce applications of Artificial Intelligence techniques, such as Decision Trees and Semantic Reasoning, for semi-automatic and semantic-model-based decision-making for archaeological feature comparisons. This paper uses the example of Roman African Red Slip Ware (ARS) and the collection of ARS at the LEIZA archaeological research institute. The main challenge is to create a Digital Twin of the ARS objects and artefacts using geometric capturing and semantic modelling of archaeological information. Moreover, the individualisation and comparison of features (appliqués), along with their visualisation, extraction, and rectification, results in a strategy and application for comparison of these features using both geometrical and archaeological aspects with a comprehensible rule set. This method of a semi-automatic semantic model-based comparison workflow for archaeological features on Roman ceramics is showcased, discussed, and concluded in three use cases: woman and boy, human–horse hybrid, and bears with local twists and shifts.

Funder

Federal Ministry of Education and Research Germany

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference133 articles.

1. Künstliche Intelligenz: Digitales Verstehen;Wahlster;Naturwissenschaftliche Rundsch.,2019

2. Archaeology 4.0: Archaeology in the Third Era of Computing;Thiery;Squirrel Pap.,2019

3. Loyal, A.E. (2018). Maschinelles Lernen angewendet auf Bilder antiker Münzen. [Master’s Thesis, Goethe University Frankfurt am Main]. Available online: http://www.bigdata.uni-frankfurt.de/wp-content/uploads/2021/11/Masterarbeit_Antje_Loyal.pdf.

4. Gampe, S. (2019). Kombination Maschineller Lernmethoden der Bild- und Texterkennung auf Antiken Münzdaten. [Bachelor’s Thesis, Goethe University Frankfurt am Main]. Available online: http://www.bigdata.uni-frankfurt.de/wp-content/uploads/2021/11/Arbeit_Sebastian_finale_Fassung_28_03_19-1.pdf.

5. Krause, R. (2020). Clusterbildung Keltischer Münzen basierend auf Convolutional Neural Networks. [Bachelor’s Thesis, Goethe University Frankfurt am Main]. Available online: http://www.bigdata.uni-frankfurt.de/wp-content/uploads/2021/11/BachelorRobinKrause_onlineDBIS.pdf.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Object-Related Research Data Workflows Within NFDI4Objects and Beyond;Proceedings of the Conference on Research Data Infrastructure;2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3