Indirect Feedback Measurement of Flow in a Water Pumping Network Employing Artificial Intelligence

Author:

Flores Thommas Kevin SalesORCID,Villanueva Juan Moises MauricioORCID,Gomes Heber P.ORCID,Catunda Sebastian Y. C.ORCID

Abstract

Indirect measurement can be used as an alternative to obtain a desired quantity, whose physical positioning or use of a direct sensor in the plant is expensive or not possible. This procedure can been improved by means of feedback control strategies of a secondary variable, which can be measured and controlled. Its main advantage is a new form of dynamic response, with improvements in the response time of the measurement of the quantity of interest. In water pumping networks, this methodology can be employed for measuring the flow indirectly, which can be advantageous due to the high price of flow sensors and the operational complexity to install them in pipelines. In this work, we present the use of artificial intelligence techniques in the implementation of the feedback system for indirect flow measurement. Among the contributions of this new technique is the design of the pressure controller using the Fuzzy logic theory, which rules out the need for knowing the plant model, as well as the use of an artificial neural network for the construction of nonlinear models with the purpose of indirectly estimating the flow. The validation of the proposed approach was carried out through experimental tests in a water pumping system, fully automated and installed at the Laboratory of Hydraulic and Energy Efficiency in Sanitation at the Federal University of Paraiba (LENHS/UFPB). The results were compared with an electromagnetic flow sensor present in the system, obtaining a maximum relative error of 10%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3