Solar Photovoltaic Integration in Monopolar DC Networks via the GNDO Algorithm

Author:

Montoya Oscar DaniloORCID,Gil-González WalterORCID,Grisales-Noreña Luis FernandoORCID

Abstract

This paper focuses on minimizing the annual operative costs in monopolar DC distribution networks with the inclusion of solar photovoltaic (PV) generators while considering a planning period of 20 years. This problem is formulated through a mixed-integer nonlinear programming (MINLP) model, in which binary variables define the nodes where the PV generators must be located, and continuous variables are related to the power flow solution and the optimal sizes of the PV sources. The implementation of a master–slave optimization approach is proposed in order to address the complexity of the MINLP formulation. In the master stage, the discrete-continuous generalized normal distribution optimizer (DCGNDO) is implemented to define the nodes for the PV sources along with their sizes. The slave stage corresponds to a specialized power flow approach for monopolar DC networks known as the successive approximation power flow method, which helps determine the total energy generation at the substation terminals and its expected operative costs in the planning period. Numerical results in the 33- and 69-bus grids demonstrate the effectiveness of the DCGNDO optimizer compared to the discrete-continuous versions of the Chu and Beasley genetic algorithm and the vortex search algorithm.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3