High-Fidelity Surrogate Based Multi-Objective Optimization Algorithm

Author:

Younis AdelORCID,Dong ZuominORCID

Abstract

The employment of conventional optimization procedures that must be repeatedly invoked during the optimization process in real-world engineering applications is hindered despite significant gains in computing power by computationally expensive models. As a result, surrogate models that require far less time and resources to analyze are used in place of these time-consuming analyses. In multi-objective optimization (MOO) problems involving pricey analysis and simulation techniques such as multi-physics modeling and simulation, finite element analysis (FEA), and computational fluid dynamics (CFD), surrogate models are found to be a promising endeavor, particularly for the optimization of complex engineering design problems involving black box functions. In order to reduce the expense of fitness function evaluations and locate the Pareto frontier for MOO problems, the automated multiobjective surrogate based Pareto finder MOO algorithm (AMSP) is proposed. Utilizing data samples taken from the feasible design region, the algorithm creates three surrogate models. The algorithm repeats the process of sampling and updating the Pareto set, by assigning weighting factors to those surrogates in accordance with the values of the root mean squared error, until a Pareto frontier is discovered. AMSP was successfully employed to identify the Pareto set and the Pareto border. Utilizing multi-objective benchmark test functions and engineering design examples such airfoil shape geometry of wind turbine, the unique approach was put to the test. The cost of computing the Pareto optima for test functions and real engineering design problem is reduced, and promising results were obtained.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference33 articles.

1. Global optimization of expensive black box problems with a known lower bound

2. Surrogate-assisted evolutionary computation: Recent advances and future challenges

3. Multi-objective Optimization on a Limited Budget of Evaluations Using Model-Assisted S-Metric Selection;Ponweiser,2008

4. Trends, features, and tests of common and recently introduced global optimization methods

5. Metamodel multi-objective optimization tool for mechatronic system design;Younis;Proceedings of the 2012 IEEE/ASME 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3