Identification of Cyclic Sulfonamides with an N-Arylacetamide Group as α-Glucosidase and α-Amylase Inhibitors: Biological Evaluation and Molecular Modeling

Author:

Saddique Furqan AhmadORCID,Ahmad MatloobORCID,Ashfaq Usman AliORCID,Muddassar Muhammad,Sultan Sadia,Zaki Magdi E. A.

Abstract

Diabetes mellitus (DM), a complicated metabolic disorder, is due to insensitivity to insulin function or reduction in insulin secretion, which results in postprandial hyperglycemia. α-Glucosidase inhibitors (AGIs) and α-amylase inhibitors (AAIs) block the function of digestive enzymes, which delays the carbohydrate hydrolysis process and ultimately helps to control the postprandial hyperglycemia. Diversified 2-(3-(3-methoxybenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)-N-arylacetamides were synthesized and evaluated for their in vitro inhibitory potential against α-glucosidase and α-amylase enzymes. The compounds with chloro, bromo and methyl substituents demonstrated good inhibition of α-glucosidase enzymes having IC50 values in the range of 25.88–46.25 μM, which are less than the standard drug, acarbose (IC50 = 58.8 μM). Similarly, some derivatives having chloro, bromo and nitro substituents were observed potent inhibitors of α-amylase enzyme, with IC50 values of 7.52 to 15.06 μM, lower than acarbose (IC50 = 17.0 μM). In addition, the most potent compound, N-(4-bromophenyl)-2-(4-hydroxy-3-(3-methoxybenzoyl)-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)acetamide (12i), was found to be a non-competitive and competitive inhibitor of α-glucosidase and α-amylase enzymes, respectively, during kinetic studies. The molecular docking studies provided the binding modes of active compounds and the molecular dynamics simulation studies of compound 12i in complex with α-amylase also showed that the compound is binding in a fashion similar to that predicted by molecular docking studies.

Funder

Higher Education Commission

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3