Higher-Dimensional Communications Using Multimode Fibers and Compact Components to Enable a Dense Set of Communicating Channels

Author:

Nolan Daniel A.1ORCID

Affiliation:

1. Science & Technology Division, Corning Research & Development Corporation, Corning, NY 14831, USA

Abstract

Higher-dimensional communications are of interest for multiple reasons, including increasing the classical transmission capacity and, more recently, the quantum state transfer through fibers using the many modes within the fiber. For quantum communications, this enables an increase in the number of bits per photon, increasing quantum fidelity, increasing error thresholds and enabling hyperentanglement transfer, among other possibilities. A high-dimensional quantum state transfer can be transported through multimode fiber using the many modes available. However, this transfer of information through multimode optical fiber is limited by attenuation and mode coupling among the various spatial and polarization modes. Here, we consider how this mode coupling impacts the transfer process. We consider the fiber’s modal properties, including orbital angular momentum, modal group numbers, and principal modes. We also investigate and propose input and output optical components, as well as fiber properties, which better mitigate the deleterious effects of mode coupling. We use the WKB approximation to the scaler wave equation as a guidance to quantify this coupling and then implement corrections to this approximation using exact solutions to the scaler wave equation. We consider methods to circumvent this mode coupling using optical fiber designs, holographic optical components and devices that are commercially available today. Some of these components, such as the holographic gratings and lenses, could be implemented using flat optics.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3