Transcriptomic Analysis of HCN-2 Cells Suggests Connection among Oxidative Stress, Senescence, and Neuron Death after SARS-CoV-2 Infection

Author:

Valeri Andrea,Chiricosta LuigiORCID,Calcaterra ValeriaORCID,Biasin MaraORCID,Cappelletti GioiaORCID,Carelli StephanaORCID,Zuccotti Gian VincenzoORCID,Bramanti Placido,Pelizzo Gloria,Mazzon Emanuela,Gugliandolo AgneseORCID

Abstract

According to the neurological symptoms of SARS-CoV-2 infection, it is known that the nervous system is influenced by the virus. We used pediatric human cerebral cortical cell line HCN-2 as a neuronal model of SARS-CoV-2 infection, and, through transcriptomic analysis, our aim was to evaluate the effect of SARS-CoV-2 in this type of cells. Transcriptome analyses revealed impairment in TXN gene, resulting in deregulation of its antioxidant functions, as well as a decrease in the DNA-repairing mechanism, as indicated by the decrease in KAT5. Western blot analyses of SOD1 and iNOS confirmed the impairment of reduction mechanisms and an increase in oxidative stress. Upregulation of CDKN2A and a decrease in CDK4 and CDK6 point to the blocking of the cell cycle that, according to the deregulation of repairing mechanism, has apoptosis as the outcome. A high level of proapoptotic gene PMAIP1 is indeed coherent with neuronal death, as also supported by increased levels of caspase 3. The upregulation of cell-cycle-blocking genes and apoptosis suggests a sufferance state of neurons after SARS-CoV-2 infection, followed by their inevitable death, which can explain the neurological symptoms reported. Further analyses are required to deeply explain the mechanisms and find potential treatments to protect neurons from oxidative stress and prevent their death.

Funder

Ministero della Salute

Regione Lombardia

Fondazione Cariplo

Publisher

MDPI AG

Subject

General Medicine

Reference73 articles.

1. Feigin and Cherry’s Textbook of Pediatric Infectious Diseases;Cherry,2013

2. Virology: Coronaviruses

3. Clinical Characteristics of COVID-19 https://www.ecdc.europa.eu/en/covid-19/latest-evidence/clinical

4. High-dimensional characterization of post-acute sequelae of COVID-19

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3