Abstract
Photosynthetic energy conversion and the resulting photoautotrophic growth of green algae can only occur in daylight, but DNA replication, nuclear and cellular divisions occur often during the night. With such a light/dark regime, an algal culture becomes synchronized. In this study, using synchronized cultures of the green alga Desmodesmus quadricauda, the dynamics of starch, lipid, polyphosphate, and guanine pools were investigated during the cell cycle by two independent methodologies; conventional biochemical analyzes of cell suspensions and confocal Raman microscopy of single algal cells. Raman microscopy reports not only on mean concentrations, but also on the distribution of pools within cells. This is more sensitive in detecting lipids than biochemical analysis, but both methods—as well as conventional fluorescence microscopy—were comparable in detecting polyphosphates. Discrepancies in the detection of starch by Raman microscopy are discussed. The power of Raman microscopy was proven to be particularly valuable in the detection of guanine, which was traceable by its unique vibrational signature. Guanine microcrystals occurred specifically at around the time of DNA replication and prior to nuclear division. Interestingly, guanine crystals co-localized with polyphosphates in the vicinity of nuclei around the time of nuclear division.
Funder
Grantová Agentura České Republiky
Reference53 articles.
1. The cell cycle of microalgae;Zachleder,2016
2. Raman microscopy shows that nitrogen-rich cellular inclusions in microalgae are microcrystalline guanine
3. Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells
4. The multiple fission cell reproductive patterns in algae;Šetlík,1984
5. Cell cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors;Zachleder;J. Cell Sci.,1992
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献