Etoposide Triggers Cellular Senescence by Inducing Multiple Centrosomes and Primary Cilia in Adrenocortical Tumor Cells

Author:

Teng Yen-Ni,Chang Huei-Cih,Chao Yu-Ying,Cheng Hui-Ling,Lien Wei-Chih,Wang Chia-YihORCID

Abstract

Etoposide (ETO) has been used in treating adrenocortical tumor (ACT) cells. Our previous study showed that ETO inhibits ACT cell growth. In the present study, we show that ETO treatment at IC50 (10 μM) inhibited ACT cell growth by inducing cellular senescence rather than apoptosis. Several markers of cellular senescence, including enlarged nuclei, activated senescence-associated β-galactosidase activity, elevated levels of p53 and p21, and down-regulation of Lamin B1, were observed. We further found that ETO induced multiple centrosomes. The inhibition of multiple centrosomes accomplished by treating cells with either roscovitine or centrinone or through the overexpression of NR5A1/SF-1 alleviated ETO-induced senescence, suggesting that ETO triggered senescence via multiple centrosomes. Primary cilia also played a role in ETO-induced senescence. In the mechanism, DNA-PK-Chk2 signaling was activated by ETO treatment; inhibition of this signaling cascade alleviated multiple ETO-induced centrosomes and primary cilia followed by reducing cellular senescence. In addition to DNA damage signaling, autophagy was also triggered by ETO treatment for centrosomal events and senescence. Importantly, the inactivation of DNA-PK-Chk2 signaling reduced ETO-triggered autophagy; however, the inhibition of autophagy did not affect DNA-PK-Chk2 activation. Thus, ETO activated the DNA-PK-Chk2 cascade to facilitate autophagy. The activated autophagy further induced multiple centrosomes and primary cilia followed by triggering senescence.

Funder

Ministry of Science and Technology, Taiwan

National Cheng Kung University Hospital

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3