Different Strategies for Photosynthetic Regulation under Fluctuating Light in Two Sympatric Paphiopedilum Species

Author:

Feng Jing-Qiu,Huang WeiORCID,Wang Ji-Hua,Zhang Shi-Bao

Abstract

Fluctuating light can cause selective photoinhibition of photosystem I (PSI) in angiosperms. Cyclic electron flow (CEF) around PSI and electron flux from water via the electron transport chain to oxygen (the water-water cycle) play important roles in coping with fluctuating light in angiosperms. However, it is unclear whether plant species in the same genus employ the same strategy to cope with fluctuating light. To answer this question, we measured P700 redox kinetics and chlorophyll fluorescence under fluctuating light in two Paphiopedilum (P.) Pftzer (Orchidaceae) species, P. dianthum and P. micranthum. After transition from dark to high light, P. dianthum displayed a rapid re-oxidation of P700, while P. micranthum displayed an over-reduction of P700. Furthermore, the rapid re-oxidation of P700 in P. dianthum was not observed when measured under anaerobic conditions. These results indicated that photo-reduction of O2 mediated by the water-water cycle was functional in P. dianthum but not in P. micranthum. Within the first few seconds after an abrupt transition from low to high light, PSI was highly oxidized in P. dianthum but was highly reduced in P. micranthum, indicating that the different responses of PSI to fluctuating light between P. micranthum and P. dianthum was attributed to the water-water cycle. In P. micranthum, the lack of the water-water cycle was partially compensated for by an enhancement of CEF. Taken together, P. dianthum and P. micranthum employed different strategies to cope with the abrupt change of light intensity, indicating the diversity of strategies for photosynthetic acclimation to fluctuating light in these two closely related orchid species.

Funder

National Natural Science Foundation of China

Applied Basic Research Plan of Yunnan Province

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3