Affiliation:
1. School of Engineering, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
2. Raysoft AssetAnalytics, Regina, SK S4N 7S1, Canada
Abstract
5/6G is anticipated to address challenges such as low data speed and high latency in current cellular networks, particularly as the number of users overwhelms 4G and LTE capabilities. This paper proposes a microstrip patch antenna array comprising six radiating patches and utilizing a microstrip line feeding technique to facilitate the compact design crucial for 5G implementation. ROGER 3003, chosen for its advanced and environmentally friendly features, serves as the dielectric material, ensuring suitability for 5G and B5G applications. The designed antenna, evaluated at a resonating frequency of 28.8 GHz with a −10 dB impedance bandwidth of 1 GHz, offers a high gain of 9.19 dBi. Its compact array, cost-effectiveness, and broad impedance and radiation coverage position it as a viable candidate for 5G and future communication applications.