Affiliation:
1. Department of Forestry Technologies and Constructions, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Prague, Czech Republic
2. Department of Environmental Management, School of Environmental Sciences, Federal University of Technology, Owerri, P.M.B. 1526, Owerri 460114, Nigeria
3. Department of Soil Science “Luiz de Queiroz”, College of Agriculture, University of São Paulo, 11 Pádua Dias Avenue, Piracicaba 13418-900, SP, Brazil
Abstract
Sustainable forest bioeconomy (SFB), as a multidimensional approach for establishing mutual benefits between forest ecosystems, the environment, the economy, and humans, is a nature-based solution for a promising future. The study aims to evaluate the potential of carbon stocks (Cstocks) and variability for SFB. It is hypothesized that the decrease in Cstocks is related to an increase in population and agriculture, which caused a decrease in forest area and growing stock and consequently affected SFB. Primary and secondary data were collected from the field, national, and international databases, and analyzed using some statistical and geospatial software packages including IBM SPSS 29.0, CANOCO 5.0, and ArcGIS 10.5. The results revealed that large forest areas were converted to arable lands between 2000 and 2020. Across the forest zones, the aboveground and belowground Cstocks varied significantly, with the aboveground biomass being higher than the belowground biomass. The main drivers of Cstocks were politics and governance (57%), population growth (50%), soil degradation practices (50%), and socio-cultural beliefs (45%). Cstocks had significant negative correlation with population growth, carbon emissions, forest growing stock, forest loss, and the use of forest for biofuel. Evergreen forest zones (rainforest and moist) had more Cstocks than the moist deciduous and swamp/mangrove forests. The study demonstrated that the variability in Cstocks over the last three decades is attributed to an increase in population and agriculture, but Cstocks variability between the forest-vegetation belts could be better explained by differences in trees abundance than population. The study also revealed that the increase in Cstocks contributed to the realization of many SDGs, especially SDG 1, 2, 3, 6, 7, 11, 12, 13, and 15, which in turn support a sustainable forest bioeconomy. Future study is necessary to evaluate Cstocks in individual tree species, biodiversity, and other forest ecosystem services to promote SFB in the country.
Funder
Operational Program Research, Development and Education
Ministry of Education of the Czech Republic