Sea Level Rise Effects on the Sedimentary Dynamics of the Douro Estuary Sandspit (Portugal)

Author:

Caeiro-Gonçalves Francisca1,Bio Ana2ORCID,Iglesias Isabel2ORCID,Avilez-Valente Paulo12ORCID

Affiliation:

1. Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

2. Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal

Abstract

Sandspits are important natural defences against the effects of storm events in estuarine regions, and their temporal and spatial dynamics are related to river flow, wave energy, and wind action. Understanding the impact of extreme wave events on the morphodynamics of these structures for current conditions and future projections is of paramount importance to promote coastal and navigation safety. In this work, a numerical analysis of the impact of a storm on the sandspit of the Douro estuary (NW Portugal) was carried out considering several mean sea level conditions induced by climate change. The selected numerical models were SWAN, for hydrodynamics, and XBeach, for hydrodynamic and morphodynamic assessments. The extreme event selected for this study was based on the meteo-oceanic conditions recorded during Hurricane Christina (January 2014), which caused significant damage on the western Portuguese coast. The analysis focused on the short-term (two days) impact of the storm on the morphodynamics of the sandspit in terms of its erosion and accretion patterns. The obtained results demonstrate that the mean sea level rise will induce some increase in the erosion/accretion volumes on the seaward side of the sandspit. Overtopping of the detached breakwater and the possibility of wave overtopping of the sandspit crest were observed for the highest simulated mean sea levels.

Funder

FCT—Foundation for Science and Technology

European Regional Development Fund

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3