Mathematical Modeling of Changes in the Dispersed Composition of Solid Phase Particles in Technological Apparatuses of Periodic and Continuous Action

Author:

Flisyuk Oleg M.,Martsulevich Nicolay A.,Meshalkin Valery P.ORCID,Garabadzhiu Alexandr V.

Abstract

This article presents a methodological approach to modeling the processes of changing the dispersed composition of solid phase particles, such as granulation, crystallization, pyrolysis, and others. Granulation is considered as a complex process consisting of simpler (elementary) processes such as continuous particle growth, agglomeration, crushing and abrasion. All these elementary processes, which are also complex in themselves, usually participate in the formation of the dispersed composition of particles and proceed simultaneously with the predominance of one process or another, depending on the method of its organization and the physicochemical properties of substances. A quantitative description of the evolution of the dispersed composition of the solid phase in technological processes in which the particle size does not remain constant is proposed. Considering the stochastic nature of elementary mass transfer events in individual particles, the methods of the theory of probability are applied. The analysis of the change in the dispersed composition is based on the balanced equation of the particle mass distribution function. The equation accounts for all possible physical mechanisms that effect changes in particle size during chemical and technological processes. Examples of solutions to this equation for specific processes of practical importance are provided. The obtained analytical solutions are of independent interest and are in good agreement with the experimental data, which indicates the adequacy of the proposed approach. These solutions can also be used to analyze similar processes. The effectiveness has been confirmed during the analysis and calculation of the processes of granulation of various solutions and disposal of oil-containing waste to obtain a granular mineral additive.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3