Abstract
Community detection is a fundamental topic in network science, with a variety of applications. However, there are still fundamental questions about how to detect more realistic network community structures. To address this problem and considering the structure of a network, we propose an agglomerative community detection algorithm, which is based on node influence and the similarity of nodes. The proposed algorithm consists of three essential steps: identifying the central node based on node influence, selecting a candidate neighbor to expand the community based on the similarity of nodes, and merging the small community based on the similarity of communities. The performance and effectiveness of the proposed algorithm were tested on real and synthetic networks, and they were further evaluated through modularity and NMI anlaysis. The experimental results show that the proposed algorithm is effective in community detection and it is quite comparable to existing classic methods.
Funder
Joint Fund of Science & Technology Department of Liaoning Province and State Key Laboratory of Robotics,China
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献