An Eagle Strategy Arithmetic Optimization Algorithm for Frequency Stability Enhancement Considering High Renewable Power Penetration and Time-Varying Load

Author:

Elkasem Ahmed. H. A.,Kamel SalahORCID,Hassan Mohamed H.ORCID,Khamies MohamedORCID,Ahmed Emad M.ORCID

Abstract

This study proposes a new optimization technique, known as the eagle strategy arithmetic optimization algorithm (ESAOA), to address the limitations of the original algorithm called arithmetic optimization algorithm (AOA). ESAOA is suggested to enhance the implementation of the original AOA. It includes an eagle strategy to avoid premature convergence and increase the populations’ efficacy to reach the optimum solution. The improved algorithm is utilized to fine-tune the parameters of the fractional-order proportional-integral-derivative (FOPID) and the PID controllers for supporting the frequency stability of a hybrid two-area multi-sources power system. Here, each area composites a combination of conventional power plants (i.e., thermal-hydro-gas) and renewable energy sources (i.e., wind farm and solar farm). Furthermore, the superiority of the proposed algorithm has been validated based on 23 benchmark functions. Then, the superiority of the proposed FOPID-based ESAOA algorithm is verified through a comparison of its performance with other controller performances (i.e., PID-based AOA, PID-based ESAOA, and PID-based teaching learning-based optimization TLBO) under different operating conditions. Furthermore, the system nonlinearities, system uncertainties, high renewable power penetration, and control time delay has been considered to ensure the effectiveness of the proposed FOPID based on the ES-AOA algorithm. All simulation results elucidate that the domination in favor of the proposed FOPID-based ES-AOA algorithm in enhancing the frequency stability effectually will guarantee a reliable performance.

Funder

the Deanship of Scientific Research at Jouf University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3