Abstract
Studying the optical properties of photosynthetic pigment–protein complexes (PPCs) in the visible light range, both experimentally and theoretically, is one of the ways of gaining knowledge about the function of the photosynthetic machinery of living species. To simulate the PPC optical response, it is necessary to use semiclassical theories describing the effect of external fields–matter interaction, energy migration in molecular crystals, and electron–phonon coupling. In this paper, we report the results of photosystem II reaction center (PSIIRC) linear optical response simulations. Applying the multimode Brownian oscillator model and the theory of molecular excitons, we have demonstrated that the absorption, circular and linear dichroism, and steady-state fluorescence of PSIIRC can be accurately fitted with the help of differential evolution (DE), the multiparametric evolutionary optimization algorithm. To explore the effectiveness of DE, we used the simulated experimental data as the target functions instead of those actually measured. Only 2 of 10 DE strategies have shown the best performance of the optimization algorithm. With the best tuning parameters of DE/rand-to-best/1/exp strategy determined from the strategy tests, we found the exact solution for the PSIIRC exciton model and fitted the spectra with a reasonable convergence rate.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献