Abstract
For computationally intensive problems, data-driven evolutionary algorithms (DDEAs) are advantageous for low computational budgets because they build surrogate models based on historical data to approximate the expensive evaluation. Real-world optimization problems are highly susceptible to noisy data, but most of the existing DDEAs are developed and tested on ideal and clean environments; hence, their performance is uncertain in practice. In order to discover how DDEAs are affected by noisy data, this paper empirically studied the performance of DDEAs in different noisy environments. To fulfill the research purpose, we implemented four representative DDEAs and tested them on common benchmark problems with noise simulations in a systematic manner. Specifically, the simulation of noisy environments considered different levels of noise intensity and probability. The experimental analysis revealed the association relationships among noisy environments, benchmark problems and the performance of DDEAs. The analysis showed that noise will generally cause deterioration of the DDEA’s performance in most cases, but the effects could vary with different types of problem landscapes and different designs of DDEAs.
Funder
Key Project of Science and Technology Innovation 2030, Ministry of Science and Technology of China
Fundamental Research Funds for the Central Universities
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)