Abstract
During the restoration of ancient wood structures, the original material of the structures should be kept as much as possible, so a spliced method by using lap joints is commonly used to repair ancient wood structures. This study studies the mechanical behavior of a lap joint which was reinforced with fiber composite materials or steels. An experimental and numerical analysis were performed to study the strength, stiffness and failure modes of the lap joints. The test results showed that the strengthening effect of sticking carbon fiber-reinforced polymer (CFRP) sheets is better than that of sticking CFRP bars or steel bars due to the better bonding conditions; therefore, the lap joint reinforced with CFRP sheets was further analyzed using a numerical approach. The strength and stiffness were enhanced by increasing the reinforcement ratio of CFRP sheets. The use of a 0.34% reinforcement ratio made the bearing capacity of the lap joint reach that of the intact beam. The numerical model agreed well with the experiments in terms of stiffness. By analyzing the numerical analysis results, the structural behavior of the lap joint was revealed. A numerical model can be used to predict the stiffness and behavior of spliced beams with lap joints of different sizes.
Subject
General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献