The Effects of Erbium-Doped Yttrium Aluminum Garnet Laser (Er: YAG) Irradiation on Sandblasted and Acid-Etched (SLA) Titanium, an In Vitro Study

Author:

Scarano AntonioORCID,Lorusso FeliceORCID,Inchingolo Francesco,Postiglione FrancescaORCID,Petrini MorenaORCID

Abstract

The treatment of peri-implantitis implies the decontamination of the surface of the fixture. This study aims to analyze the effect of the erbium-doped yttrium aluminum garnet laser (Er: YAG) on sandblasted and acid-etched (SLA) titanium. 30 titanium SLA disks were divided into three groups. In Group 1, the disks were left intact; on the contrary, both Groups 2 and 3 were irradiated with the Er: YAG laser at different settings, with a pulse duration of 300 μs and a period of 30 s. Group 2 was irradiated at 1 W and 100 mJ/pulse and Group 3 at 4 W and 400 mJ/pulse. The superficial changes at chemical, nano, and microscopical levels were detected through the use of Fourier-transform infrared spectroscopy, atomic force microscopy, and scanning electron microscope. The Kruskal–Wallis test, followed by the Dunn–Bonferroni Post Hoc analysis, detected the presence of statistically significant differences among the groups. The level of significance was p ≤ 0.05. Results showed that Er: YAG irradiation promoted a significant (p < 0.05) increase of oxides and a decrease of microscopical roughness and porosity on SLA disks. However, the protocol tested on group 3 seemed to be too aggressive for the titanium surface, as shown by the presence of micro-cracks and signs of coagulation, melting, and microfractures. In conclusion, Group 2 showed significantly minor surface alterations with respect to Group 3, and the increase of superficial oxide level, the decrease of porosity, and micro-roughness represent a positive alteration that could protect the materials against bacterial adhesion.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3